

University Libraries Special Collections & University Archives

Herb Rawdon Papers

Collection Summary

Title:	Herb Rawdon Papers
Call Number:	MS 81-06
Size:	15.0 linear feet
Acquisition:	Donated by Mrs. Herb Rawdon and Mr. and Mrs. Herb Rawdon Jr.
Processed By:	RJK, 12-31-1981; JEF, 5-20-1999; MN, 12-2008
Note:	None
Restrictions:	None

Literary Rights

Literary rights were granted to Wichita State University. When permission is granted to examine the manuscripts, it is not an authorization to publish them. Manuscripts cannot be used for publication without regard for common law literary rights, copyright laws and the laws of libel. It is the responsibility of the researcher and his/her publisher to obtain permission to publish. Scholars and students who eventually plan to have their work published are urged to make inquiry regarding overall restrictions on publication before initial research.

Restrictions

None

Content Note

The Herb Rawdon Papers include notebooks, engineering drawings, photographs, speeches, and memorabilia relating primarily to his professional career as an aviation engineer.

Biography

Herbert M. Rawdon, Wichita aviation pioneer, was born in Kansas City, Missouri in 1904. He attended public school in Woodward and Sharon, Oklahoma, graduating from high school in 1921. Rawdon attended Ohio Northern University for a short time, but soon transferred to Tri-State College at Angola, Indiana, where he received a B.S. degree in mechanical engineering in 1925.

Upon graduation, Rawdon went to work for the Travel Air Company in Wichita. He remained with Travel Air for the next six years, rising to the position of chief engineer. Rawdon left Travel Air when the company merged with

Curtiss-Wright in 1931. He formed the Rawdon-Christopher Aircraft Company, specializing in aircraft maintenance and modification, but this venture lasted only one year. He then worked as a draftsman for Lockheed and Boeing from 1933 to 1934. In 1935, Rawdon accepted a one year teaching position as an engineering instructor for the Curtiss-Wright Technical Institute in California. He then served as production manager and superintendent for Spartan Aircraft Company in Tulsa, Oklahoma. From 1937 to 1940, Rawdon worked as a design engineer for Douglas Aircraft in El Segundo, California. During these three years he also served as a consultant for the National Aircraft Company in San Antonio, Texas.

In 1940, Rawdon returned to Wichita to work for Beech Aircraft Company. He served as chief engineer for the Design and Research Division until he left the company in 1960. After leaving Beech, Rawdon was associated with Boeing, Cessna, and Lycoming on a consulting basis while engaged in advance design work of his own.

Herb Rawdon is perhaps best known as the designer, in collaboration with Walter Burnham, of the Travel Air Model R, or "Mystery Ship." In 1929, the "Mystery-S," as it came to be known, became the first civilian aircraft to win the Thompson Trophy. Rawdon and Burnham were both employees of Walter Beech at the Travel Air Company. Beech had been consistently frustrated in his attempts to defeat the military planes in the National Air Races and win the Thompson Trophy. After the 1928 races, Beech lamented the poor showing of the commercial entries. In response to Beech's remarks, Rawdon and Burnham designed the Model R. They worked on the project totally in their spare time and totally in secret. When they finished, they showed the plans to Beech who immediately ordered the plane in to production. The entire project was kept under wraps, hence the designation "Mystery Ship." At Cleveland in 1929 the plane easily outdistanced all other entries in the National Air Races. Although it was never put into full-scale production, the "Mystery Ship" helped bring about fundamental changes in aircraft design.

At the time of his death on December 2, 1975, Rawdon was president of Rawdon Brothers Aircraft and owner of the Rawdon Airfield in east Wichita.

Series 1	Box 1 FF 1	Personal Notebook
Series 2	Box 1 FF 2-Box 3 FF 2	Literary Productions
Series 3	Box 3 FF 3-6	Speeches and Speech Materials
Series 4	Box 3 FF 7-Box 7	Business Papers
Series 5	Box 8 FF 1-6	Miscellaneous Rawdon Documents
Series 6	Box 8 FF 7-Box 10 FF 3	General Files
Series 7	Box 10 FF 4-Box 12	Photographs
Series 8	Box 13-Box 17 FF 13	NACA Reports, Research Memoranda and Technical Notes
Series 9	Box 17 FF 14-Box 18	NASA Reports, Research Memoranda and Technical Notes
Series 10	Box 19-Box 20 FF 10	Miscellaneous Documents
Series 11	Box 20 FF 11-14	U.S. Navy Department Bureau of Aeronautics Technical Notes
Series 12	Box 20 FF 15-27	War Department Technical Manuals
Series 13	Box 20 FF 28-29	Air Corps Information Circulars, Vols. VI and VII

Detailed Description: Series Listing

Series 14	Box 20 FF 30-34	Air Service Information Circulars, Vols. II - VI
Series 15	Box 20 FF 35-39	Miscellaneous Reports and Journals
Series 16	Box 21-26 and Oversized Storage	Blueprints and Drawings

Detailed Description: Box and Folder Listing

Series 1 – Personal Notebook

Box 1	FF 1	Personal Notebook
-------	------	-------------------

Series 2 – Literary Productions

Box 1	FF 2	Literary Productions: Design Data and Charts
Box 1	FF 3	Literary Productions: "The Design of an Airplane"
Box 1	FF 4	Literary Productions: "Development of the Beech Bonanza"
Box 1	FF 5	Literary Productions: "Estimating Airplane Development Costs"
Box 1	FF 6	Literary Productions: "The Gas Turbine and Jet Propulsion"
Box 1	FF 7	Literary Productions: "The Landing Gear"
Box 1	FF 8	Literary Productions: Photographs for "The Landing Gear" article
Box 2	FF 1	Literary Productions: "An Operator's Observations on the Flying Business"
Box 2	FF 2	Literary Productions: "Preliminary Design Processes"
Box 2	FF 3	Literary Productions: "Personal Aircraft - Problems and Progress"
Box 2	FF 4	Literary Productions: Research Data for "Personal Aircraft - Problems and Progress" article
Box 3	FF 1	Literary Productions: "Requirements of the Feeder Line Airplane"
Box 3	FF 2	Literary Productions: Review of Wm. Lear's "The Modern Executive Airplane as a Medium of Transportation"

Series 3 – Speeches and Speech Materials

Box 3	FF 3	Speech Materials
Box 3	FF 4	Speeches: "The Travel Air Mystery Ship"
Box 3	FF 5	Speeches: "Wing and Tail Surface Structures"

Box 3	FF 6	Speeches: "Wood vs. Metal Aircraft Construction"

Series 4 – Business Papers

Box 3	FF 7	Business Papers: Beech Aircraft Company: Comments on "Simplified RequirementsCAR Part 3"
Box 3	FF 8	Business Papers: Beech Aircraft Company: Model A35 - Weight Control Report and Drawings
Box 4	FF 1	Business Papers: Boeing: Model 909 - Preliminary Study
Box 4	FF 2	Business Papers: National Aircraft Company: Basic Trainer - Schematics and Monoplane Design
Box 4	FF 3	Business Papers: Cleveland Pneumatic Tool Company: Torque Arm Blueprints
Box 4	FF 4	Business Papers: Rawdon Aircraft Company: Engineering Department - Organization and Management Data
Box 4	FF 5	Business Papers: Rawdon Aircraft Company: Practical Designs and Organizations
Box 5	FF 1	Business Papers: Rawdon Brothers Aircraft: Cabin Airplane - 3 View Drawing
Box 5	FF 2	Business Papers: Rawdon Brothers Aircraft: Model R-1 - Structural Analysis
Box 5	FF 3	Business Papers: Rawdon Brothers Aircraft: Model R-2 - Inboard Profile
Box 5	FF 4	Business Papers: Rawdon Brothers Aircraft: Organizational Plans
Box 5	FF 5	Business Papers: Rawdon Brothers Aircraft: Report DL-501 - The Rawdon Series "C4" Aircraft
Box 5	FF 6	Business Papers: Rawdon-Burnham Company: Tri-State College Wind Tunnel
Box 6	FF 1	Business Papers: Rawdon-Christopher Aircraft: Instrument Board
Box 6	FF 2	Business Papers: Rawdon-Christopher Aircraft: Model 2B-3 View Drawing
Box 6	FF 3	Business Papers: Rawdon-Christopher Aircraft: U.S. Army Air Corps Drafting Room Manual
Box 6	FF 4	Business Papers: Rawdon-Christopher Aircraft: U.S. Army Air Corps Standards
Box 6	FF 5	Business Papers: Travel Air: Appendix to Model R Analysis
Box 6	FF 6	Business Papers: Travel Air: Model R and R105 - Miscellaneous Data
Box 6	FF 7	Business Papers: Travel Air: Model RD - 3 View Drawing

Box 7	FF 1	Business Papers: Travel Air: Model 4000 - Stress Analysis
Box 7	FF 2	Business Papers: Travel Air: Model 6000 - Stress Analysis
Box 7	FF 3	Business Papers: Travel Air: Model 7000 - Stress Analysis

Series 5 – Miscellaneous Rawdon Documents

Box 8	FF 1	Rawdon Miscellaneous: Dayton University Tire Test Machine
Box 8	FF 2	Rawdon Miscellaneous: Miscellaneous Sketches
Box 8	FF 3	Rawdon Miscellaneous: Sketch - Unidentified Airplane
Box 8	FF 4	Rawdon Miscellaneous: Tri-State College: Descriptive Geometry - Miscellaneouns Problems
Box 8	FF 5	Rawdon Miscellaneous: Tri-State College: "The Design of a Gas Engine"
Box 8	FF 6	Rawdon Miscellaneous: Tri-State College: Fuselage Joint Sketch

Series 6 – General Files

Box 8	FF 7	General Files: Bellanca Aircraft Corporation
Box 8	FF 8	General Files: Carter Engineering Company
Box 8	FF 9	General Files: Curtiss-Wright - Fuel Tanks
Box 8	FF 10	General Files: Design Information (File 1)
Box 8	FF 11	General Files: Design Information (File 2)
Box 9	FF 1	General Files: Dimensions of an Average-Size Man
Box 9	FF 2	General Files: "An Engineer's Nightmare"
Box 9	FF 3	General Files: Federal Aviation Agency/Industry Agricultural Aviation Meeting
Box 9	FF 4	General Files: Fuji Heavy Industries, Ltd.
Box 9	FF 5	General Files: Graphical Determination of Veliocity and Acceleration
Box 9	FF 6	General Files: Hamilton Standard Propellers
Box 9	FF 7	General Files: Lauson-Power Products
Box 9	FF 8	General Files: Lycoming
Box 9	FF 9	General Files: Miscellaneous Aircraft Standards
Box 9	FF 10	General Files: Navy Department - Miscellaneous Technical Notes

Box 10	FF 1	General Files: Society of Automotive Engineers - Announcements
Box 10	FF 2	General Files: Unidentified Drawing
Box 10	FF 3	General Files: U.S. Army Air Corps Material Division Standards

Series 7 – Photographs

Box 10	FF 4	Photographs: Beech Aircraft Company: Bonanza (File 1)
Box 10	FF 5	Photographs: Beech Aircraft Company: Bonanza (File 2)
Box 10	FF 6	Photographs: Beech Aircraft Company: Continental Motor
Box 10	FF 7	Photographs: Beech Aircraft Company: Landing Gear Test
Box 10	FF 8	Photographs: Beech Aircraft Company: Miscellaneous Propellers
Box 11	FF 1	Photographs: Beech Aircraft Company: Model AT10 and Model 18
Box 11	FF 2	Photographs: Beech Aircraft Company: Model AT10 - Jigs and Tools
Box 11	FF 3	Photographs: Beech Aircraft Company: Model AT11
Box 11	FF 4	Photographs: Beech Aircraft Company: Model 17
Box 11	FF 5	Photographs: Beech Aircraft Company: Model T1
Box 11	FF 6	Photographs: Beech Aircraft Company: Model 34 "Twin Quad"
Box 11	FF 7	Photographs: Beech Aircraft Company: Twin Bonanza (File 1)
Box 11	FF 8	Photographs: Beech Aircraft Company: Twin Bonanza (File 2)
Box 11	FF 9	Photographs: Beech Aircraft Company: Type F2 Photographic Plane
Box 11	FF 10	Photographs: Beech Aircraft Company: Vibration Test Set-Up
Box 12	FF 1	Photographs: Miscellaneous Aircraft
Box 12	FF 2	Photographs: Miscellaneous Photographs from Rawdon's Articles
Box 12	FF 3	Photographs: Nutt, Arthur
Box 12	FF 4	Photographs: Rawdon, Herb
Box 12	FF 5	Photographs: Roby Propeller
Box 12	FF 6	Photographs: Travel Air (File 1)
Box 12	FF 7	Photographs: Travel Air (File 2)
Box 12	FF 8	Photographs: "The Mystery Ship"

Series 8 – NACA Reports, Research Memoranda and Technical Notes

Box 13	FF 1	National Advisory Committee for Aeronautics (NACA) Report 1135. Equations, Tables, and Charts for Compressible Flow. By Ames Research Staff. 1953.
Box 13	FF 2	NACA Report 1154. Analysis of Landing-Gear Behavior. By Benjamin Milwitzky and Francis E. Cook. 1953.
Box 13	FF 3	NACA Report 1339. A Summary and Analysis of the Low-Speed Longitudinal Characteristics of Swept Wings at High Reynolds Number. By G. Chester Furlong and James G. McHugh. 1953.
Box 13	FF 4	NACA Research Memorandum L8D09. Summary of Section Data on Trailing-Edge High-Lift Devices. By Jones F. Cahill. Langley Aeronautical Laboratory, Langley Field, Va. August 20, 1948.
Box 13	FF 5	NACA Research Memorandum L55D21. Velocity Distributions Measured in the Slipstream of Eight-Blade and Six-Blade Dual-Rotating Propellers at Zero Advance. By Leland B. Salters, Jr. Langley Aeronautical Laboratory, Langley Field, Va. June 21, 1955.
Box 13	FF 6	NACA Research Memorandum L55E12c. Vertical and Drag Ground- Reaction Forces Developed in Landing Impacts of a Large Airplane. By Richard H. Sawyer, Albert W. Hall, and James M. McKay. Langley Aeronautical Laboratory, Langley Field, Va. June 21, 1955.
Box 13	FF 7	NACA Technical Note 1245. Summary of Lateral-Control Research. By Langley Research Department. Compiled by Thomas A. Toll. Langley Memorial Aeronautical Laboratory, Langley Field, Va. March 1947.
Box 13	FF 8	NACA Technical Note 1404. Collection of Test Data for Lateral Control with Full-Span Flaps. By Jack Fischel and Margaret F. Ivey. Langley Memorial Aeronautical Laboratory, Langley Field, Va. April 1948.
Box 13	FF 9	NACA Technical Note 2201. Measurement of the Moments of Inertia of an Airplane by a Simplified Method. By Howard L. Turner. Ames Aeronautical Laboratory, Moffett Field, Ca. October 1950.
Box 13	FF 10	NACA Technical Note 2596. An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings. By Robert T. Yntema and Benjamin Milwitzky. Langley Aeronautical Laboratory, Langley Field, Va. January 1952.
Box 13	FF 11	NACA Technical Note 2645. Effects of Wing Lift and Weight on Landing-Gear Loads. By Dean C. Lindquist. Langley Aeronautical Laboratory, Langley Field, Va. March 1952.
Box 13	FF 12	NACA Technical Note 2661. A Summary of Diagonal Tension Part I - Methods of Analysis. By Paul Kuhn, James P. Peterson and L. Ross Levin. Langley Aeronautical Laboratory, Langley Field, Va. May 1952.
Box 13	FF 13	NACA Technical Note 2662. A Summary of Diagonal Tension Part II - Experimental Evidence. By Paul Kuhn, James P. Peterson and L. Ross Levin. Langley Aeronautical Laboratory, Langley Field, Va. May 1952.

Box 13	FF 14	NACA Technical Note 2670. High-Speed Subsonic Characteristics of 16 NACA 6-Series Airfoil Sections. By Milton D. Van Dyke. Ames Aeronautical Laboratory, Moffett Field, Ca. March 1952.
Box 13	FF 15	NACA Technical Note 2775. Analysis of Landing-Gear Behavior. By Benjamin Milwitzky and Francis E. Cook. Langley Aeronautical Laboratory, Langley Field, Va. August 1952.
Box 13	FF 16	NACA Technical Note 2926. Static Force-Deflection Characteristics of Six Aircraft Tires Under Combined Loading. By Walter B. Horne. Langley Aeronautical Laboratory, Langley Field, Va. May 1953.
Box 13	FF 17	NACA Technical Note 2930. Strength Analysis of Stiffened Thick Beam Webs with Ratios of Web Depth to Web Thickness of Approximately 60. By L. Ross Levin. Langley Aeronautical Laboratory, Langley Field, Va. May 1953.
Box 14	FF 1	NACA Technical Note 3023. Results of Edge-Compression Tests on Stiffened Flat-Sheet Panels of Alclad and Nonclad 14S-T6, 24S-T3 and 75S-T6 Aluminum Alloys. By Marshall Holt. Aluminum Company of America. April 1954.
Box 14	FF 2	NACA Technical Note 3182. Manual of the ICAO Standard Atmosphere, Calculations by the NACA. International Civil Aviation Organization, Montreal, Canada and Langley Aeronautical Laboratory, Langley Field, Va. May 1954.
Box 14	FF 3	NACA Technical Note 3246. An Experimental Investigation of Wheel Spin-Up Drag Loads. By Benjamin Milwitzky, Dean C. Lindquist and Dexter M. Potter. Langley Aeronautical Laboratory, Langley Field, Va. September 1954.
Box 14	FF 4	NACA Technical Note 3294. Friction Study of Aircraft Tire Material on Concrete. By W.G. Hample. Boeing Aircraft Company. September 1955.
Box 14	FF 5	NACA Technical Note 3413. Investigation of the Use of a Rubber Analog in the Study of Stress Distribution in Riveted and Cemented Joints. By Louis R. Demarkles. Massachusetts Institute of Technology. November 1955.
Box 14	FF 6	NACA Technical Note 3415. A Universal Column Formula for Load at Which Yielding Starts. By L.H. Donnell and V.C. Tsien. Illinois Institute of Technology. October 1955.
Box 14	FF 7	NACA Technical Note 3435. A Statistical Study of Wing Lift at Ground Contact for Four Transport Airplanes. By Dean C. Lindquist. Langley Aeronautical Laboratory, Langley Field, Va. April 1955.
Box 14	FF 8	NACA Technical Note 3475. An Analysis of Acceleration, Airspeed and Gust-Velocity Data from One Type of Four-Engine Transport Airplane Operated Over Two Domestic Routes. By Martin R. Copp and Thomas L. Coleman. Langley Aeronautical Laboratory, Langley Field, Va. October 1955.
Box 14	FF 9	NACA Technical Note 3476. Calculated Spanwise Lift Distributions and Aerodynamic Influence Coefficients for Swept Wings in Subsonic Flow. By Franklin W. Diederich and Martin Zlotnick. Langley Aeronautical Laboratory,

		Langley Field, Va. October 1955.
Box 14	FF 10	NACA Technical Note 3495. Failure of Materials Under Combined Repeated Stresses with Superimposed Static Stresses. By George Sines. University of California at Los Angeles. November 1955.
Box 14	FF 11	NACA Technical Note 3497. Summary of Results of a Wind-Tunnel Investigation of Nine Related Horizontal Tails. By Jules B. Dods, Jr. and Bruce E. Tinling. Ames Aeronautical Laboratory, Moffett Field, Ca. July 1955.
Box 14	FF 12	NACA Technical Note 3502. The Transonic Characteristics of 38 Cambered Rectangular Wings of Varying Aspect Ratio and Thickness as Determined by the Transonic-Bump Technique. By Warren H. Nelson and Walter J. Krumm. Ames Aeronautical Laboratory, Moffett Field, California. June 1955.
Box 14	FF 13	NACA Technical Note 3541. A Method for Obtaining Statistical Data on Airplane Vertical Velocity at Ground Contact Acceleration. By Robert C. Dreher. Langley Aeronautical Laboratory, Langley Field, Va. February 1956.
Box 14	FF 14	NACA Technical Note 3564. Effect of Pneumatic De-Icers and Ice Formations on Aerodynamice Characteristics of an Airfoil. By Dean T. Bowden. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. February 1956.
Box 14	FF 15	NACA Technical Note 3600. Correlation of Crippling Strength of Plate Structures with Material Properties. By Roger A. Anderson and Melvin S. Anderson. Langley Aeronautical Laboratory, Langley Field, Va. January 1956.
Box 14	FF 16	NACA Technical Note 3603. Theoretical Study of the Lateral Frequency Response to Gusts of a Fighter Airplane, Both with Controls Fixed and with Several Types of Autopilots. By James J. Adams and Charles W. Mathews. Langley Aeronautical Laboratory, Langley Field, Va. March 1956.
Box 14	FF 17	NACA Technical Note 3604. Low-Speed Yawed-Rolling Characteristics and Other Elastic Properties of a pair of 26-Inch-Diameter, 12-Ply-Rating, Type Vii Aircraft Tires. By Walter B. Horne, Robert F. Smiley and Bertrand H. Stephenson. Langley Aeronautical Laboratory, Langley Field, Va. May 1956.
Box 14	FF 18	NACA Technical Note 3610. Comparison of Landing-Impact Velocities of First and Second Wheel to Contact from Statistical Measurements of Transport Airplane Landings. By Eziaslav N. Harrin. Langley Aeronautical Laboratory, Langley Field, Va. February 1956.
Box 14	FF 19	NACA Technical Note 3615. An Experimental Investigation of the Scale Relations for the Impinging Water Spray Generated by a Planing Surface. By Ellis E. McBride. Langley Aeronautical Laboratory, Langley Field, Va. February 1956.
Box 14	FF 20	NACA Technical Note 3619. Effect of Carriage Mass Upon the Loads and Motions of a Prismatic Body During Hydrodynamic Impact. By Melvin F. Markey. Langley Aeronautical Laboratory, Langley Field, Va. March 1956.

Box 14	FF 21	NACA Technical Note 3629. Investigation of the Effects of Ground Proximity and Propeller Position on the Effectiveness of a Wing with Large-Chord Slotted Flaps in Redirecting Propeller Slipstreams Downward for Vertical Take-Off. By Richard E. Kuhn. Langley Aeronautical Laboratory, Langley Field, Va. March 1956.
Box 15	FF 1	NACA Technical Note 3633. Analysis of the Ultimate Strength and Optimum Proportions of Multiweb Wing Structures. By B. Walter Rosen. Langley Aeronautical Laboratory, Langley Field, Va. March 1956.
Box 15	FF 2	NACA Technical Note 3637. Flight Investigation of the Effectiveness of an Automatic Aileron Trim Control Device for Personal Airplanes. By William H. Phillips, Helmut A. Kuehnel and James B. Whitten. Langley Aeronautical Laboratory, Langley Field, Va. April 1956.
Box 15	FF 3	NACA Technical Note 3642. Effect of Shallow Water on the Hydrodynamic Characteristics of a Flat-Bottom Planing Surface. By Kenneth W. Christopher. Langley Aeronautical Laboratory, Langley Field, Va. April 1956.
Box 15	FF 4	NACA Technical Note 3646. A Theory for the Elastic Deflections of Plates Integrally Stiffened on One Side. By Robert F. Crawford. Langley Aeronautical Laboratory, Langley Field, Va. April 1956.
Box 15	FF 5	NACA Technical Note 3676. Investigation of Lateral Control Near the Stall: Flight Tests with High-Wing and Low-Wing Monoplanes of Various Configurations. By Fred E. Weick and H. Norman Abramson. Agricultural and Mechanical College of Texas. June 1956.
Box 15	FF 6	NACA Technical Note 3698. Preliminary Investigation of Self-Excited Vibrations of Single Planing Surfaces. By Elmo J. Mottard. Langley Aeronautical Laboratory, Langley Field, Virgina. June 1956.
Box 15	FF 7	NACA Technical Note 3781. Handbook of Structural Stability Part I - Buckling of Flat Plates. By George Gerard and Herbert Becker. New York University. July 1957.
Box 15	FF 8	NACA Technical Note 3782. Handbook of Structural Stability Part II - Buckling of Composite Elements. By Herbert Becker. New York University. July 1957.
Box 15	FF 9	NACA Technical Note 3783. Handbook of Structural Stability Part III - Buckling of Curved Plates and Shells. By George Gerard and Herbert Becker. New York University. August 1957.
Box 15	FF 10	NACA Technical Note 3784. Handbook of Structural Stability Part IV - Failure of Plates and Composite Elements. By George Gerard. New York University. August 1957.
Box 15	FF 11	NACA Technical Note 3785. Handbook of Structural Stability Part V - Compressive Strength of Flat Stiffened Panels. By George Gerard. New York University. August 1957.
Box 15	FF 12	NACA Technical Note 3786. Handbook of Structural Stability Part VI - Strength of Stiffened Curved Plates and Shells. By Herbert Becker. New York University. July 1958.

Box 15	FF 13	NACA Technical Note 4109. Low-Speed Yawned-Rolling Characteristics and Other Elastic Properties of a Pair of 40-inch-Diameter, 14-Ply-Rating, Type VII Aircraft Tires. By Walter B. Horne and Robert F. Smiley. Langley Aeronautical Laboratory, Langley Field, Va. January 1958.
Box 15	FF 14	NACA Technical Note 4110. Mechanical Properties of Pneumatic Tires with Special Reference to Modern Aircraft Tires. By Robert F. Smiley and Walter B. Horne. Langley Aeronautical Laboratory, Langley Field, Va. January 1958.
Box 15	FF 15	NACA Technical Note 4126. Experimental Investigation of the Effects of Some Shroud Design Variables on the Static Thrust Characteristics of a Small-Scale Shrouded Propeller Submerged in a Wing. By Robert T. Taylor. Langley Aeronautical Laboratory, Langley Field, Va. January 1958.
Box 15	FF 16	NACA Technical Note 4137. Fatigue Behavior of Aircraft Structural Beams. By W.S. Hyler, H.G. Popp, D.N. Gideon, S.A. Gordon and H.J. Grover. Battelle Memorial Institute. January 1958.
Box 15	FF 17	NACA Technical Note 4147. Measured and Predicted Dynamic Response Characteristics of a Flexible Airplane to Elevator Control Over a Frequency Range Including Three Structural Modes. By Henry A. Cole, Jr. and Euclid C. Holleman. Ames Aeronautical Laboratory, Moffett Field, Ca. February 1958.
Box 15	FF 18	NACA Technical Note 4151. Correlations Among Ice Measurements, Inpingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil. By Vernon H. Gray. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. February 1958.
Box 15	FF 19	NACA Technical Note 4155. Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil. By Vernon H. Gray. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. February 1958.
Box 15	FF 20	NACA Technical Note 4158. Accelerations in Transport-Airplane Crashes. By G. Merritt Preston and Gerard J. Pesman. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. February 1958.
Box 15	FF 21	NACA Technical Note 4168. A Method for Calculation of Hydrodynamic Lift for Submerged and Planing Rectangular Lifting Surfaces. By Kennet L. Wadlin and Kenneth W. Christopher. Langley Aeronautical Laboratory, Langley Field, Va. January 1958.
Box 15	FF 22	NACA Technical Note 4177. Wind-Tunnel Investigation of the Static Longitudinal Stability and Trim Characteristics of a Sweptback-Wing Jet-Transport Model Equipped with an External-Flow Jet-Augumented Flap. By Joseph L. Johnson, Jr. Langley Aeronautical Laboratory, Langley Field, Va. January 1958.
Box 16	FF 1	NACA Technical Note 4188. Charts Relating the Compressive and Shear Buckling Stresses of Longitudinally Supported Plates to the Effective Deflectional Stiffness of the Supports. By Aldie E. Johnson, Jr. Langley Aeronautical Laboratory, Langley Field, Va. February 1958.
Box 16	FF 2	NACA Technical Note 4200. Effectiveness of Boundary-Layer Control, Obtained by Blowing Over a Plain Rear Flap in Combination with a Forward

		Slotted Flap, in Deflecting a Slipstream Downward for Vertical Take-Off. By Kenneth P. Spreemann. Langley Aeronautical Laboratory, Langley Field, Va. February 1958.
Box 16	FF 3	NACA Technical Note 4203. Flight Investigation of Effects of Atmospheric Turbulence and Moderate Maneuvers on Bending and Torsional Moments Encountered by a Helicopter Rotor Blade. By LeRoy H. Ludi. Langley Aeronautical Laboratory, Langley Field, Va. February 1958.
Box 16	FF 4	NACA Technical Note 4205. Transient Heating Effects on the Bending Strength of Integral Alumnium-Alloy Box Beams. By Richard A. Pride and John B. Hall, Jr. Langley Aeronautical Laboratory, Langley Field, Va. March 1958.
Box 16	FF 5	NACA Technical Note 4220. A Flight Evaluation and Analysis of the Effect of Icing Conditions on the ZPG-2 Airship. By William Lewis and Porter J. Perkins, Jr. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. April 1958.
Box 16	FF 6	NACA Technical Note 4237. General Instability of Stiffened Cylinders. By Herbert Becker. Ne York University. July 1958.
Box 16	FF 7	NACA Technical Note 4247. Study of Ground-Reaction Forces Measured During Landing Impacts of a Large Airplane. By Albert W. Hall, Richard H. Sawyer and James M. McKay. Langley Aeronautical Laboratory, Langley Field, Va. May 1958.
Box 16	FF 8	NACA Technical Note 4251. An Experimental Investigation of Wake Effects on Hydro-Skis. By Ellis E. McBride and Lloyd J. Fisher. Langley Aeronautical Laboratory, Langley Field, Va. May 1958.
Box 16	FF 9	NACA Technical Note 4254. Flight Investigation on Effects of Retreating-Blade Stall on Bending and Torsional Moments Encountered by a Helicopter Rotor Blade. By LeRoy H. Ludi. Langley Aeronautical Laboratory, Langley Field, Va. May 1958.
Box 16	FF 10	NACA Technical Note 4255. Wind-Tunnel Investigation at Low-Speeds of Flight Characteristics of a Sweptback-Wing Jet-Transport Airplane Model Equipped with an External-Flow Jet-Augmented Slotted Flap. By Joseph L. Johnson, Jr. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 16	FF 11	NACA Technical Note 4261. Acoustic, Thrust, and Drag Characteristics of Several Full-Scale Noise Suppressors for Turbojet Engines. By Carl C. Ciepluch, Warren J. North, Willard D. Coles and Robert J. Antl. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. April 1958.
Box 16	FF 12	NACA Technical Note 4276. An Approximate Analytical Method for Studying Entry Into Planetary Atmospheres. By Dean R. Chapman. Ames Aeronautical Laboratory, Moffett Field, Ca. May 1958.
Box 16	FF 13	NACA Technical Note 4283. Full-Scale Wind-Tunnel Tests of a 350 Sweptback-Wing Airplane with Blowing from the Shroud Ahead of the Trailing-Edge Flaps. By William H. Tolhurst, Jr. Ames Aeronautical Laboratory, Moffett Field, Ca. July 1958.
Box 16	FF 14	NACA Technical Note 4290. A Fuselage Addition to Increase Drag-Rise Mach Number of Subsonic Airplanes at Lifting Conditions. By Richard T.

		Whitcomb. Langley Aeronautical Laboratory, Langley Field, Va. June 1958.
Box 16	FF 15	NACA Technical Note 4291. An Evaluation of Effects of Flexibility on Wing Strains in RoughAir for a Large Swept-Wing Airplane by Means of Experimentally Determined Frequency-Response Functions with an Assessment of Random-Process Techniques Employed. By Thomas L. Coleman, Harry Press and May T. Meadows. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 16	FF 16	NACA Technical Note 4292. Local Instability of the Elements of a Truss-Core Sandwich Plate. By Melvin S. Anderson. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 16	FF 17	NACA Technical Note 4293. Special Bodies Added on a Wing to Reduce Shock-Induced Boundary-Layer Separation at High Subsonic Speeds. By Richard T. Whitcomb. Langley Aeronautical Laboratory, Langley Field, Va. June 1958.
Box 16	FF 18	NACA Technical Note 4294. Effects of Nose Shape and Spray Control Strips on Emergence and Planing Spray of Hydro-Ski Models. By John R. McGehee. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 16	FF 19	NACA Technical Note 4297. Flight Investigation of the Acceptability of a Small Side-Located Controller Used with an Irreversible Hydraulic Control System. By Helmut A. Kuehnel and Robert W. Sommer. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 16	FF 20	NACA Technical Note 4304. Matrix Method for Obtaining Spanwise Moments and Deflections of Torsionally Rigid Motor Blades with Arbitrary Loadings. By Alton P. Mayo. Langley Aeronautical Laboratory, Langley Field, Va. August 1958.
Box 16	FF 21	NACA Technical Note 4307. Experimental Measurements of the Effects of Airplane Motions on Wing and Tail Angles of Attack of a Swept-Wing Bomber in Rough Air. By Jerome N. Engel. Langley Aeronautical Laboratory, Langley Field, Va. August 1958.
Box 16	FF 22	NACA Technical Note 4310. Measurements of the Motions of a Large Swept-Wing Airplane in Rough Air. By Richard H. Rhyne. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 16	FF 23	NACA Technical Note 4317. Turbojet Engine Noise Reduction with Mixing Nozzle-Ejector Combinations. By Willard D. Coles, John A. Mihaloew and Edmund E. Callaghan. Lewis Flight Propulsion Laboratory, Cleveland, Ohio. August 1958.
Box 16	FF 24	NACA Technical Note 4322. Ordinates and Theoretical Pressure-Distribution Data for NACA 6-and 6A-Series Airfoil Sections with Thickness from 2 to 21 and from 2 to 15 Percent Chord, Respectively. By Elizabeth W. Patterson and Albert L. Braslow. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 16	FF 25	NACA Technical Note 4339. Hydrodynamic Impact Loads of a -200 Dead-Rise Inverted-V Model and Comparisons with Loads of a Flat-Bottom Model. By Philip M. Edge, Jr. Langley Aeronautical Laboratory, Langley Field, Va. August 1958.

Box 16	FF 26	NACA Technical Note 4351. Summary of Methods of Measuring Angle of Attack on Aircraft. By William Gracey. Langley Aeronautical Laboratory, Langley Field, Va. August 1958.
Box 17	FF 1	NACA Technical Note 4355. Low Tip Mach Number Stall Characteristics and High Tip Mach Number Compressibility Effects on a Helicopter Rotor Having an NACA 0009 Tip Airfoil Section. By Robert D. Powell, Jr. and Paul J. Carpenter. Langley Aeronautical Laboratory, Langley Field, Va. July 1958.
Box 17	FF 2	NACA Technical Note 4356. Effects of Compressibility on Rotor Hovering Performance and Synthesized Blade-Section Characteristics Derived from Measured Rotor Performance of Blades Having NACA 0015 Airfoil Tip Sections. By James P. Shivers and Paul J. Carpenter. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 3	NACA Technical Note 4357. Lift and Profile-Drag Characteristics of an NACA 0012 Airfoil Section as Derived from Measured Helicopter-Rotor Hovering Performance. By Paul J. Carpenter. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 4	NACA Technical Note 4367. Wind-Tunnel Tests of a Full-Scale Helicopter Rotor with Symmetrical and with Cambered Blade Sections at Advance Ratios from 0.3 to 0.4. By John L. McCloud III and George B. McCullough. Ames Aeronautical Laboratory, Moffett Field, Ca. September 1958.
Box 17	FF 5	NACA Technical Note 4389. Effect of Advance Ratio on Flight Performance of a Modified Supersonic Propeller. By Jerome B. Hammack and Thomas C. O'Bryan. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 6	NACA Technical Note 4393. Some Static Longitudinal Stability Characteristics of an Overlapped-Type Tandem-Rotor Helicopter at Low Airspeeds. By Robert J. Tapscott. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 7	NACA Technical Note 4400. Measurements of Ground-Reaction Forces and Vertical Center-of-Gravity Accelerations of a Bomber Airplane Taxiing Over Obstacles. By James M. McKay, Richard H. Sawyer and Albert W. Hall. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 8	NACA Technical Note 4401. Hydrodynamic Impact Loads on 30° and 60° V-Step Plan-Form Models with and without Dead Rise. By Philip M. Edge, Jr. and Jean P. Mason. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 9	NACA Technical Note 4403. Tests of Ring-Stiffened Circular Cylinders Subjected to a Transverse Shear Load. By James P. Peterson and Richard G. Updegraff. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 10	NACA Technical Note 4406. Low Tire Friction and Cornering Forces on a Wet Surface. By Eziaslav N. Harrin. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 11	NACA Technical Note 4407. Effects of Ground Proximity on the Thrust of a Simple Downward-Directed Jet Beneath a Flat Surface. By Kenneth P.

		Spreemann and Irving R. Sherman. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 12	NACA Technical Note 4409. Flight Measurements of the Vibration Experienced by a Tandem Helicopter in Transition, Vortex-Ring State, Landing Approach, and Yawed Flight. By John E. Yeates. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.
Box 17	FF 13	NACA Technical Note 4410. Flight Measurements of the Vibratory Stresses on a Propeller Designed for an Advance Ratio of 4.0 and a Mach Number of 0.82. By Thomas C. O'Bryan. Langley Aeronautical Laboratory, Langley Field, Va. September 1958.

Series 9 – NASA Reports, Research Memoranda and Technical Notes

Box 17	FF 14	NASA Technical Note D-4. Influence of Shaft Deflection and Surface Roughness on Load-Carrying Capacity of Plain Journal Bearings. By F.H. Raven and R.L. Wehe. Cornell University. August 1959.
Box 17	FF 15	NASA Technical Note D-35. Full-Scale Wind-Tunnel Investigation of the Longitudinal Characteristics of a Tilting-Rotor Convertiplane. By David G. Koenig, Richard K. Greif and Mark W. Kelly. Ames Research Center, Moffett Field, Ca. December 1959.
Box 17	FF 16	NASA Technical Note D-44. Force-Test Investigation of the Stability and Control Characteristics of a 1/8-Scale Model of a Tilt-Wing Vertical- Take-Off-and-Landing Airplane. By Louis P. Tosti. Langley Research Center, Langley Field, Va. March 1960.
Box 17	FF 17	NASA Technical Note D-45. Flight Investigation of Stability and Control Characteristics of a 1/8-Scale Model of a Tilt-Wing Vertical-Take-Off- and-Landing Airplane. By Louis P. Tosti. Langley Research Center, Langley Field, Va. March 1960.
Box 17	FF 18	NASA Technical Note D-51. The Hydrodynamic Characteristics of a Submerged Lifting Surface Having a Shape Suitable for Hydro-Ski Application. By Victor L. Vaughan, Jr. Langley Research Center, Langley Field, Va. October 1959.
Box 17	FF 19	NASA Technical Note D-89. Wind-Tunnel and Piloted Flight Simulator Investigation of a Deflected-Slipstream VTOL Airplane, the Ryan VZ-3RY. By Harry A. James, Rodney C. Wingrove, Curt A. Holzhauser and Fred J. Drinkwater III. Ames Research Center, Moffett Field, Ca. November 1959.
Box 17	FF 20	NASA Technical Note D-103. Investigation of Double Slotted Flaps on a Swept-Wing Transport Model. By Rodger L. Naseth and Edwin E. Davenport. Langley Research Center, Langley Field, Va. October 1959.
Box 17	FF 21	NASA Technical Note D-110. Method for Predicting Off-Design Performance of Axial-Flow Compressor Blade Rows. By George K. Serovy and E.W. Anderson. Iowa State College. August 1959.
Box 17	FF 22	NASA Technical Note D-119. Investigation of a High-Speed Hydrofoil with Parabolic Thickness Distribution. By Virgil E. Johnson, Jr. and Thomas A. Rasnick. Langley Research Center, Langley Field, Va. November 1959.

Box 17	FF 23	NASA Technical Note D-136. The Effects of Thrust Reversal at Mach Numbers Up to 0.86 on the Longitudinal and Buffeting Characteristics of a Typical Jet-Transport Airplane Configuration. By Fred B. Sutton and Jack J. Brownson. Ames Research Center, Moffett Field, Ca. March 1960.
Box 17	FF 24	NASA Technical Note D-137. A Preliminary Investigation of the Penetration of Slender Metal Rods in Thick Metal Targets. By James L. Summers and William R. Niehaus. Ames Research Center, Moffett Field, Ca. December 1959.
Box 17	FF 25	NASA Technical Note D-153. A Flight Study of the Conversion Maneuver of a Tilt-Wing VTOL Aircraft. By Lovic P. Thomas III. Langley Research Center, Langley Field, Va. December 1959.
Box 17	FF 26	NASA Technical Note D-154. Braking and Landing Tests on Some New Types of Airplane Landing Mats and Membranes. By Sidney A. Batterson. Langley Research Center, Langley Field, Va. October 1959.
Box 18	FF 1	NASA Technical Note D-165. A Brief Investigation of the Effect of Waves on the Take-Off Resistance of a Seaplane. By Elmo J. Mottard. Langley Research Center, Langley Field, Va. December 1959.
Box 18	FF 2	NASA Technical Note D-166. A Hydrodynamic Investigation of the Effect of Adding Upper-Surface Camber to a Submerged Flat Plate. By Victor L. Vaughan, Jr. Langley Research Center, Langley Field, Va. November 1959.
Box 18	FF 3	NASA Technical Note D-168. Static Force Tests of Several Annular Jet Configurations in Proximity to Smooth and Irregular Ground. By Edwin E. Davenport, Richard E. Kuhn and Irving R. Sherman. Langley Research Center, Langley Field, Va. November 1959.
Box 18	FF 4	NASA Technical Note D-180. Hydrodynamic Characteristics of a Planing Surface with Convex Longitudinal Curvature and an Angle of Dead Rise of 20. By Elmo J. Mottard. Langley Research Center, Langley Field, Va. January 1960.
Box 18	FF 5	NASA Technical Note D-187. Experimental Investigation of Aspect-Ratio-1 Supercavitating Hydrofoils at Speeds Up to 185 Feet Per Second. By Kenneth W. Christopher and Virgil E. Johnson, Jr. Langley Research Center, Langley Field, Va. January 1960.
Box 18	FF 6	NASA Technical Note D-192. Summary of Rawinsonde Measurements of Temperatures, Pressuer Heights, and Winds Above 50,000 Feet Along a Flight-Test Range in the Southwestern United States. By Terry J. Larson and Harold P. Washington. Flight Research Center, Edwards, Ca. January 1960.
Box 18	FF 7	NASA Technical Note D-207. Hydrodynamic Impact-Loads Investigation of Chine-Immersed 0° Dead-Rise Configurations Having Longitudinal Curvature with an Appended Bibliography of Langley Impact Basin Hydrodynamic Publications. By Robert W. Miller. Langley Research Center, Langley Field, Va. February 1960.
Box 18	FF 8	NASA Technical Note D-214. Experimental Investigation of Spin-Up Friction Coefficients on Concrete and Nonskid Carrier-Deck Surfaces. By Walter B. Horne. Langley Research Center, Langley Field, Va. April 1960.

Box 18	FF 9	NASA Technical Note D-218. Longitudinal Aerodynamic Characteristics of a High-Subsonic-Speed Transport Airplane Model with a Cambered 40° Sweptback Wing of Aspect Ratio 8 atMach Numbers to 0.96. By Atwood R. Heath, Jr. Langley Research Center, Langley Field, Va. February 1960.
Box 18	FF 10	NASA Technical Note D-220. A Brief Investigation of a Hydro-Ski Stabilized Hydrofoil System on a Model of a Twin-Engine Amphibian. By Sandy M. Stubbs and Edward L. Hoffman. Langley Research Center, Langley Field, Va. February 1960.
Box 18	FF 11	NASA Technical Note D-272. Thermal-Stress Fatigue Cracking of Turbine Buckets Operated at 1700°F in a Turbojet Engine with Long Periods of Operation Between Starts. By Robert A. Sighorelli, James R. Johnston and William J. Waters. Lewis Research Center, Cleveland, Ohio. February 1960.
Box 18	FF 12	NASA Technical Note D-274. Crash-Fire Protection System for a J57 Turbojet EngineUsing Water as a Cooling and Inerting Agent. By Dugald O. Black. Lewis Research Center, Cleveland, Ohio. February 1960.
Box 18	FF 13	NASA Technical Note D-366. Power Spectral Analysis of Some Airplane Response Quantities Obtained During Operational Training Missions of a Fighter Airplane. By Harold A. Hamer and John P. Mayer. Langley Research Center, Langley Field, Va. March 1960.
Box 18	FF 14	NASA Technical Note D-386. Statistical Data on Control Motions and Airplane Response of a Republic F-84F Airplane During Operational Training Missions. By Harold A. Hamer and John P. Mayer. Langley Research Center, Langley Field, Va. March 1960.
Box 18	FF 15	NASA Report 20. Tire-to-Surface Friction-Coefficient Measuements with a C-123B Airplane on Various Runway Surfaces. By Richard H. Sawyer and Joseph J. Kolnick. Langley Research Center, Langley Field, Va. June 1959.
Box 18	FF 16	NASA Memorandum 1-5-59L. The Effect of Beam Loading on Water Impact Loads and Motions. By John S. Mixson. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 17	NASA Memorandum 1-6-59L. Investigation of Spherical-Wave-Initiated Flow Fields Around Bodies. By Donald R. McFarland. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 18	NASA Memorandum 1-7-59L. A Wind-Tunnel Investigation of Rotor Behavior Under Extreme Operating Conditions with a Description of Blade Oscillations Attributed to Pitch-Log Coupling. By John W. McKee and Rodger L. Naeseth. Langley Research Center, Langley Field, Va. January 1959.
Box 18	FF 19	NASA Memorandum 1-9-59L. Hydrodynamic Impact-Load Alleviation with a Penetrating Hydro-Ski. By Philip M. Edge, Jr. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 20	NASA Memorandum 1-16-59L. Semiempirical Procedure for Estimating Lift and Drag Characteristics of Propeller-Wing-Flap Configurations for Vertical- and Short-Take-Off-and-Landing Airplanes. By Richard E. Kuhn. Langley Research Center, Langley Field, Va. February 1959.

Box 18	FF 21	NASA Memorandum 1-17-59L. Analysis of Acceleration, Airspeed, and Gust-Velocity Data from a Four-Engine Transport Airplane Operating over a Northwestern United States-Alaska Route. By Jerome N. Engel and Martin R. Copp. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 22	NASA Memorandum 1-23-59L. Maximum Mean Lift Coefficient Characteristics at Low Tip Mach Numbers of a Hovering Helicopter Rotor Having an NACA 64, A012 Airfoil Section. By Robert D. Powell, Jr. Langley Research Center, Langley Field, Va. Feburary 1959.
Box 18	FF 23	NASA Memorandum 1-25-59L. Effect of Convex Longitudinal Curvature on the Planing Characteristics of a Surface without Dead Rise. By Elmo J. Mottard. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 24	NASA Memorandum 1-31-59L. Parasite-Drag Measurements of Five Helicopter Rotor Hubs. By Gary B. Churchill and Robert D. Harrington. Langley Research Center, Langley Field, Va. February 1959.
Box 18	FF 25	NASA Memorandum 2-21-59L. Study of Taxiing Problems Associated with Runway Roughness. By Benjamin Milwitzky. Langley Research Center, Langley Field, Va. March 1959.
Box 18	FF 26	NASA Memorandum 2-23-59L. Tire-to-Surface Friction Especially Under Wet Conditions. By Richard H. Sawyer, Sidney A. Batterson and Eziaslav N. Harrin. Langley Research Center, Langley Field, Va. March 1959.
Box 18	FF 27	NASA Memorandum 2-24-59A. The Effect of Moment-of-Area-Rule Modifications on the Drag, Lift and Pitching-Moment Characteristics of an Unswept Aspect-Ratio-6 Wing and Body Combination. By Robert R. Dickey. Ames Research Center, Moffett Field, Ca. March 1959.
Box 18	FF 28	NASA Memorandum 2-28-59L. Comparison of Measured Flapwise Structural Bending Moments on a Teetering Rotor Blade with Results Calculated from the Measured Pressure Distribution. By Alton P. Mayo. Langley Research Center, Langley Field, Va. March 1959.
Box 18	FF 29	NASA Memorandum 3-1-59H. Flight Studies of Problems Pertinent to Low-Speed Operation of Jet Transports. By Jack Fischel, Stanley P. Butchart, Glenn H. Robinson and Robert A. Tremant. High-Speed Flight Station, Edwards, Ca. April 1959.
Box 18	FF 30	NASA Memorandum 3-2-59H. Flight Studies of Problems Pertinent to High-Speed Operation of Jet Transports. By Stanley P. Butchart, Jack Fischel, Robert A. Tremant and Glenn H. Robinson. High-Speed Flight Station, Edwards, Ca. April 1959.
Box 18	FF 31	NASA Memorandum 3-5-59L. Noise Problems Associated with Ground Operations of Jet Aircraft. By Harvey H. Hubbard. Langley Research Center, Langley Field, Va. March 1959.
Box 18	FF 32	NASA Memorandum 4-17-59L. Airplane Measurements of Atmospheric Turbulence at Altitudes Between 20,000 and 55,000 Feet for Four Geographic Areas. By Thomas L. Coleman and May T. Meadows. Langley Research Center, Langley Field, Va. June 1959.

Box 18	FF 33	NASA Memorandum 4-19-59L. Flight Performance of a Transonic Turbine- Driven Propeller Designed for Minimum Noise. By Thomas C. O'Bryan and Jerome B. Hammack. Langley Research Center, Langley Field, Va. May 1959.
Box 18	FF 34	NASA Memorandum 4-26-59A. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane. By Seth B. Anderson, George E. Cooper and Alan E. Faye, Jr. Ames Research Center, Moffett Field, Ca. May 1959.
Box 18	FF 35	NASA Memorandum 5-1-59L. Low-Speed Investigation of Blowing from Nacelles Mounted Inboard and on the Upper Surface of an Aspect-Ratio-7.0 35 Swept Wing with Fuselage and Various Tail Arrangements. By Thomas R. Turner, Edwin E. Davenport and John M. Riebe. Langley Research Center, Langley Field, Va. June 1959.
Box 18	FF 36	NASA Memorandum 5-3-59L. Investigation of the Structural Behavior and Maximum Bending Strength of Six Multiweb Beams with Three Types of Webs. By James P. Peterson and Walter E. Bruce, Jr. Langley Research Center, Langley Field, Va. May 1959.
Box 18	FF 37	NASA Memorandum 5-9-59L. Hydrodynamic Characteristics of Two Low-Drag Supercavitating Hydrofoils. By John R. McGehee and Virgil E. Johnson, Jr. Langley Research Center, Langley Field, Va. June 1959.
Box 18	FF 38	NASA Memorandum 5-12-59E. Analytical Investigation of the Effect of Turbopump Design on Gross-Weight Characteristics of a Hydrogen- Propelled Nuclear Rocket. By Harold E. Rohlik and James E. Crouse. Lewis Research Center, Cleveland, Ohio, June 1959.
Box 18	FF 39	NASA Memorandum 5-19-59E. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature. By A. Martin Eiband. Lewis Research Center, Cleveland, Ohio. June 1959.
Box 18	FF 40	NASA Memorandum 6-12-59E. Crash-Fire Protection System for T-56 Turbopropeller Engine Using Water as Cooling and Inerting Agent. By Arthur M. Busch and John A. Campbell. Lewis Research Center, Cleveland, Ohio. May 1959.
Box 18	FF 41	NASA Memorandum 6-29-59L. Three-Dimensional Lunar Mission Studies. By William H. Michael, Jr. and Robert H. Tolson. Langley Research Center, Langley Field, Va. June 1959.
Box 18	FF 42	NASA Memorandum 11-3-58L. Force-Test Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical- Take-Off-and-Landing Aircraft. By William A. Newsom, Jr. and Louis P. Tosti. Langley Research Center, Langley Field, Va. January 1959.
Box 18	FF 43	NASA Memorandum 11-4-58L. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical- Take-Off-and-Landing Aircraft. By Louis P. Tosti. Langley Research Center, Langley Field, Va. January 1959.
Box 18	FF 44	NASA Memorandum 12-3-58A. Large-Scale Wind-Tunnel Tests of an Airplane Model with an Unswept, Aspect-Ratio-10 Wing, Two Propellers, and Blowing Flaps. By Roy N. Griffin, Jr., Curtis Holzhauser and James A.

		Weiberg. Ames Research Center, Moffett Field, Ca. December 1958.
Box 18	FF 45	NASA Memorandum 12-3-58L. An Analysis of Flight-Test Measurements of the Wing Structural Deformations in Rough Air of a Large Flexible Swept-Wing Airplane. By Harold N. Murrow. Langley Research Center, Langley Field, Va. January 1959.
Box 18	FF 46	NASA Memorandum 12-20-58L. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds. By Sidney A. Batterson. Langley Research Center, Langley Field, Va. January 1959.

Series 10 – Miscellaneous Documents

Box 19		Miscellaneous documents regarding aviation and engineering belonging to Rawdon and Burnham. Included are newspaper articles, photographs, reports and magazines.
Box 20	FF 1	"No Radical Changes - Steady Tendency Toward Metal-Steel Looks Promising," by H. Rawdon, <u>Aviation</u> , February 15, 1930. Also includes a partial artice dated September 7, 1929 from the same publication.
Box 20	FF 2	Three publications by Curtiss Aeroplane and Motor Co., Inc.: "The Curtiss Anti Drag Ring;" "The New Curtiss Propeller;" and "The Curtiss Controllable Pitch Propeller."
Box 20	FF 3	Two publications by Curtiss-Wright Airplane Company: "Curtiss-Wright 'Junior'" and "Curtiss-Wright 'Sedan.'"
Box 20	FF 4	"Aircraft Engines," Wright Curtiss, Wright Aeronautical Corporation.
Box 20	FF 5	"Four-Place 'Challenger Robin' Monoplane," The Curtiss-Robertson Airplane Manufacturing Co.
Box 20	FF 6	The Tradewind, Volume XI, Number 9, September 1929.
Box 20	FF 7	"Stable for SportSturdy for Training," Travel Air.
Box 20	FF 8	Two publications by Keystone Aircraft Corporation: "1931 Keystone Loeing Air Yacht 8 Place Amphibian Powered with 525 H.P. Wright Cyclone Engine" and "Keystone Loeing Amphibian 'Air Yacht' C-2 Model Powered with 525 H.P. Wright Cyclone Engine."
Box 20	FF 9	Three publications by The International Nickel Company, Inc.: "Available Publications on Nickel and Its Alloys," Fall Edition 1929; "Nickel Steel No. 15, Nickel-Chromium Steels for High Temperature Service - Valves and Bolts;" and "Nickel Steel No. 16, Approximate Relations Between Brinell, Rockwell and Shore Hardness and the Tensile Strengths of Structural Alloy Steels."
Box 20	FF 10	"Instruction Manual for Pioneer Instruments," Pioneer Instrument Company.

Series 11 – U.S. Navy Department Bureau of Aeronautics Technical Notes

Box 20	FF 11	"General Specification for the Design of Airplanes for the United States Navy," Navy Department Bureau of Aeronautics, April 1, 1926.
Box 20	FF 12	United States Navy Department Bureau of Aeronautics Technical Note No. 4, Series of 1930, "Prevention of Airplane Fires."
Box 20	FF 13	United States Navy Department Bureau of Aeronautics Technical Note No. 7, Series of 1930, "Static Stability of Seaplane Floats and Hulls."
Box 20	FF 14	United States Navy Department Bureau of Aeronautics Technical Note No. 11, Series of 1930, "Cruising Performance of Airplanes," by Lieut. Commander E.E. Wilson, U.S.N. and Lieut. Commander B.G. Leighton, U.S.N.

Series 12 – War Department Technical Manuals

Box 20	FF 15	War Department Technical Manual 1-400. Theory of Flight. February 24, 1941.
Box 20	FF 16	War Department Technical Manual 1-405. Aircraft Engines.
Box 20	FF 17	War Department Technical Manual 1-406. Aircraft Electrial Systems.
Box 20	FF 18	War Department Technical Manual 1-407. Aircraft Induction, Fuel and Oil Systems.
Box 20	FF 19	War Department Technical Manual 1-408. Aircraft Engine Operation and Test.
Box 20	FF 20	War Department Technical Manual 1-410. Airplane Structures.
Box 20	FF 21	War Department Technical Manual 1-412. Aircraft Propellers.
Box 20	FF 22	War Department Technical Manual 1-413. Aircraft Instruments.
Box 20	FF 23	War Department Technical Manual 1-415. Airplane Inspection Guide. March 24, 1941.
Box 20	FF 24	War Department Technical Manual 1-420. Lathes.
Box 20	FF 25	War Department Technical Manual 1-430. Welding. February 20, 1941.
Box 20	FF 26	War Department Technical Manual 1-435. Aircraft Sheet Metal Work. February 10, 1941.
Box 20	FF 27	War Department Technical Manual 1-455. Electrical Fundamentals.

Series 13 – Air Corps Information Circulars, Vols. VI and VII

Box 20FF 28Air Corps Information Circular Vol. VI: Nos. 586, 589, 593, and 595 dating
from May 21, 1927 to November 1, 1927.

Box 20	FF 29	Air Corps Information Circular Vol. VII: Nos. 609, 613, 623, 624, 627, 630, 631, 633, 634, 636, 638-640, 643, 645-647, 649-651, 653, and 654 dating from February 1, 1928 to April 1, 1933.
Series 14 –	Air Service	Information Circulars, Vols. II-VI
Box 20	FF 30	Air Service Information Circular Vol. II: Nos. 101, 102, 104, 107, 132, 133, 143-145, 147, 150, 152, 153, 156, 157, 166, 167, 172, 173, 176, 177, 179, and 195-197 dating from August 10, 1920 to May 1, 1921.
Box 20	FF 31	Air Service Information Circular Vol. III: Nos. 202, 206, 210, 211-213, 221, 225, 230, 246-248, 255, 259-262, 263, 266, 268, 272, 285, 286, 291, 292, and 295 dating from April 25, 1921 to October 20, 1921.
Box 20	FF 32	Air Service Information Circular Vol. IV: Nos. 303, 303 (addendum), 304, 312-314, 317-319, 332, 335-337, 341, 356, 358, 360-362, 364, 367, 368, 370, 387, and 394 dating from February 15, 1922 to February 15, 1923.
Box 20	FF 33	Air Service Information Circular Vol. V: Nos. 405, 406, 408, 416-419, 421, 423, 433, 434, 436, 440, 442, 446, 454, 458, 460, 468, 470, 473, and 498 dating from April 1, 1923 to September 1, 1924.
Box 20	FF 34	Air Service Information Circular Vol. VI: Nos. 510, 541, 545, 547, 549, 553, 557, 560, and 564 dating from June 1, 1925 to April 24, 1926.

Series 15 – Miscellaneous Reports and Journals

Box 20	FF 35	Report. "Test of a Zenith Carburetor Model U.S. 52 Fitted with 'Plain Tube' and Britton Type Discharge Nozzles."
Box 20	FF 36	Report. "The Analysis of the Possibilities and the Organization of a Small Aircraft and Manufacturing Concern and the Determination of the Most Suitable Types for Manufacture," by H. Rawdon, 1931.
Box 20	FF 37	Timken Engineering Journal.
Box 20	FF 38	Automotive Edition New Departure Ball Bearings.
Box 20	FF 39	Two unidentified aviation-related photographs.

Series 16 – Blueprints and Drawings

Box 21	FF 1	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-100, Lycoming R-680 300 HP Inboard Profile.
Box 21	FF 2	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-101, Lycoming R-680 300HP Three View Drawing.
Box 21	FF 3	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-110 (1 of 3), Fuselage Structure Details.
Box 21	FF 4	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-110 (2 of 3), Fuselage Structure Details.

Box 21	FF 5	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-110 (3 of 3), Fuselage Structure Details.
Box 21	FF 6	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-111, Lycoming R-680 300 HP Engine Mount.
Box 21	FF 7	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-120, Main Landing Gear Assy. and Details.
Box 21	FF 8	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-121, Chassis Details Main Gear.
Box 21	FF 9	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-122, Tail Wheel Unit Inst. and Details.
Box 21	FF 10	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-123, Wheel Fairing Bendix - 24 x 4 Disc Wheels.
Box 21	FF 11	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-125, Wheel Assy. and Brake 15 x 5.5 (26 O.D.).
Box 21	FF 12	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-126, Wheel and Brake Details - Disc Brake.
Box 21	FF 13	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-127 (1 of 2), Wheel Assy. and Brake 16 x 5 - Borrani.
Box 21	FF 14	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-127 (2 of 2), Wheel Details 16 x 5 - Borrani Rim.
Box 21	FF 15	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-130, Surface Control Details - Stick Cont. Sys.
Box 21	FF 16	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-132, Aileron Push-Pull Tube and Guide Tube.
Box 21	FF 17	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-133, Stabilizer Adj. Mechanism.
Box 22	FF 1	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-140, Horizontal Tail Surface Assem.
Box 22	FF 2	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-141, Vertical Tail Surface Assem.
Box 22	FF 3	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-142, Tail Surface Details.
Box 22	FF 4	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-150, Wing Assembly.
Box 22	FF 5	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 151, Wing Spars.
Box 22	FF 6	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 152, Wing Rib Details.

Box 22	FF 7	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-153, Misc. Wing Details - I.
Box 22	FF 8	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-154, Wing-Details Fittings.
Box 22	FF 9	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 155, Aileron Assembly.
Box 22	FF 10	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-156, Aileron Details.
Box 22	FF 11	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 157, Aileron Details - II.
Box 22	FF 12	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 158, Misc. Wing Details - II.
Box 22	FF 13	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-159, Wing Skin Plating Diagram.
Box 22	FF 14	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-160, Fuselage Section Contour Lines.
Box 22	FF 15	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR- 161, Fuselage Fairing Details - STA - 37 to 148.5.
Box 22	FF 16	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-162 (1 of 2), Center Section Fairing.
Box 22	FF 17	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-162 (2 of 2), Center Section Fairing - Details.
Box 22	FF 18	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-163 (1 of 2), Fuselage Sheet Metal Details.
Box 22	FF 19	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-163 (2 of 2), Fuselage Sheet Metal Details.
Box 22	FF 20	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-164, Pilots Seat Inst. and Details.
Box 22	FF 21	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-165, Instrument Panel Inst. and Details.
Box 22	FF 22	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-166, Fuselage Tail Cone Fairing.
Box 23	FF 1	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-170, Firewall Assy. Lycoming R-680 300 HP.
Box 23	FF 2	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-171, Fuel Tank Lycoming R-680 300 HP.
Box 23	FF 3	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-172, Oil Tank - Inst. and Details Lycoming R-680 300 HP.

Box 23	FF 4	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-173, Engine Cowling Lycoming R-680 300 HP.
Box 23	FF 5	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-174, Exhaust System Inst. and Details Lycoming R-680 300 HP.
Box 23	FF 6	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-175, Power Plant Inst. Lycoming R-680.
Box 23	FF 7	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-176, Misc. Power Plant Inst. Details Lycoming R-680.
Box 23	FF 8	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-177, Fuel and Oil System Diagrams Lycoming R-680.
Box 23	FF 9	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-190 (1 of 2), Material List Structural Items.
Box 23	FF 10	Blueprints and Drawings: Rawdon Engineer Co., Wichita, Kansas, Model-R. MR-190 (2 of 2), Material Lists Structure.
Box 23	FF 11	Unidentified materials.
Box 24	FF 1	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R123, Travel Air Co. Fuel System (four drawing).
Box 24	FF 2	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R521, Tail Skid Structure.
Box 24	FF 3	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R522, Tail Skid Stock Asorber (sic) Oleo Type.
Box 24	FF 4	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R400, Empennage.
Box 24	FF 5	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R333, Elevator Control Walking Beam.
Box 24	FF 6	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R332, Control Stick Gearing.
Box 24	FF 7	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R334, Control Stick Gearing.
Box 24	FF 8	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB214, False Spar.
Box 24	FF 9	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB218, Compression Ribs.
Box 24	FF 10	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB214, False Spar.
Box 24	FF 11	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R323, Fuel Tank 40 Gal.

Box 24	FF 12	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R522, Tail Skid Shock Asorber (sic) Oleo Type.
Box 24	FF 13	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R531, Motor Mount.
Box 24	FF 14	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R334, Control Stick Gearing.
Box 24	FF 15	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R331, Control Stick and Elevator Push-Pull Tube.
Box 24	FF 16	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R402, Special Rudder and Fin Area F=4.73 Area Rudder=6.64.
Box 24	FF 17	same as FF 16.
Box 24	FF 18	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R335, Rudder Pedal.
Box 24	FF 19	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R424, Stabilizer Adjustment.
Box 24	FF 20	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R512, Chassis Shock Absorber Oleo Type.
Box 25	FF 1	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R224, Aileron Control at Aileron.
Box 25	FF 2	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R120, Wiring Diagram.
Box 25	FF 3	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R225, Aileron Details.
Box 25	FF 4	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB130, Center-line Drawing of Wing Arrangement
Box 25	FF 5	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB224, Aileron Control at Aileron
Box 25	FF 6	same as FF 4
Box 25	FF 7	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R320, Engine Installation.
Box 25	FF 8	same as FF 2
Box 25	FF 9	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R215, Wing Fittings
Box 25	FF 10	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R325, Oil Radiator

Box 25	FF 11	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R224, Aileron Control at Aileron
Box 25	FF 12	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RB220, Aileron
Box 25	FF 13	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R215, Wing Fittings
Box 25	FF 14	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R121, Rigging Assembly
Box 25	FF 15	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R401, Empennage Details
Box 25	FF 16	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R100, Instrument Broad
Box 26	FF 1	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R011, Fuselage Structure
Box 26	FF 2	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. Bendix Hydraulic Brake Unit
Box 26	FF 3	Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. R220, Aileron
Oversized		Blueprints and Drawings: H. Rawdon and W.E. Burnham Engineers, Wichita, Kansas. RA100, General Arrangement
Oversized		Blueprints and Drawings: Rawdon Aircraft Company. Glider Model G-1.
Oversized		Blueprints and Drawings: Rawdon Aircraft Company. Soaring Machine S-1.
Oversized		Blueprints and Drawings: Rawdon Brothers Aircraft. Model R-3.
Oversized		OversizedBlueprints and Drawings: Rawdon-Christopher Aircraft. Laird 400 Aircraft.
Oversized		Blueprints and Drawings: Travel Air. Model 2000 - 3 view.
Oversized		Blueprints and Drawings: Travel Air. Mystery Ship - blueprints.
Oversized		Blueprints and Drawings: Travel Air. Mystery Ship - drawings.
Oversized		Blueprints and Drawings: Rawdon Miscellaneous. Graphs.
Oversized		Blueprints and Drawings: Rawdon Miscellaneous. Drawings - unidentified airplane, 3 view.
Oversized		Blueprints and Drawings: Rawdon Miscellaneous. Drawings - unidentified airplane, 3 view.
Oversized		Blueprints and Drawings: Rawdon Miscellaneous. Drawings - unmarked.

Oversized	Blueprints and Drawings: Rawdon Miscellaneous. Miscellaneous drawings.
Oversized	Blueprints and Drawings: Rawdon Miscellaneous. Miscellaneous drawings.
Oversized	Blueprints and Drawings: Tri-State College. Truss drawings.
Oversized	Blueprints and Drawings: Tri-State College. Wall garder drawings.

For information, please contact us at:

Special Collections and University Archives Wichita State University Libraries 1845 Fairmount, Wichita, KS 67260-0068

Web site: <u>http://specialcollections.wichita.edu</u> E-mail: <u>specialcollections@wichita.edu</u> Telephone: 316-978-3590